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Abstract

Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome
(e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome
annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs).
Whole genome transcriptome analysis is a complementary method to identify ‘‘novel’’ genes, small RNAs, regulatory regions,
and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs
has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very
little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease
(BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study,
we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method. The RNA-Seq based
transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier
studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome
annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When
compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (,30%) were located
in genomic region unique to strain 2336 (,18% of the total genome). This observation suggests that a number of the newly
identified sRNAs in strain 2336 may be involved in strain-specific adaptations.
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Introduction

Systems biology approaches are designed to facilitate the study

of complex interactions among genes, proteins, and other genomic

elements [1,2,3]. In the context of infectious disease, systems

biology has the potential to complement reductionist approaches

to resolve the complex interactions between host and pathogen

that determine disease outcome. However, a prerequisite for

systems biology is the description of the system’s components.

Therefore, genome structural annotation or the identification and

demarcation of boundaries of functional elements in a genome

(e.g., genes, non-coding RNAs, proteins, and regulatory elements)

are critical elements in infectious disease systems biology.

Bovine Respiratory Disease (BRD) costs the cattle industry in

the United States as much as $3 billion annually [4,5]. BRD is the

outcome of complex interactions among host, environment,

bacterial, and viral pathogens [6]. Histophilus somni, a gram-

negative, pleomorphic species, is one of the important causative

agents of BRD [6]. H. somni causes bovine infertility, abortion,

septicemia, arthritis, myocarditis, and thrombotic meningoen-

cephalitis [7]. H. somni strain 2336, the serotype used in this study

and isolated from pneumonic calf lung, has a 2.2 Mbp genome

and 2044 predicted open reading frames (ORFs), of which 1569

(76%) have an assigned biological function.

Genome structural annotation is a multi-level process that

includes prediction of coding genes, pseudogenes, promoter

regions, repeat elements, regulatory elements in intergenic regions

such as small non-coding RNAs (sRNA), and other genomic

features of biological significance. Computational gene prediction

methods such as Glimmer [8] or GenMark [9] use Hidden

Markov models which are based on a training set of well annotated

genes. Although these methods are quite efficient, they often miss

genes with anomalous nucleotide composition and have several

well-described shortcomings: because bacterial genomes do not

have introns, detecting gene boundaries is comparatively difficult;

due to the usage of more than one start codon, computational
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genome annotation methods may predict overlapping ORFs [10];

prediction programs use arbitrary minimum cutoff lengths to filter

short ORFs, which may lead to under-representation of small

genes. In case of sRNA (small non-coding RNA) prediction, the

lack of DNA sequence conservation, lack of a protein coding

frame, and the limited accuracy of transcriptional signal prediction

programs (promoter/Rho terminator prediction) confound com-

putational prediction [11,12].

Computational prediction methods are a ‘‘first pass’’ genome

structural annotation. Whole genome transcriptome studies (such

as whole genome tiling arrays [13,14,15] and high throughput

sequencing [16,17]) are complementary experimental approaches

for bacterial genome annotation and can identify ‘‘novel’’ genes,

gene boundaries, regulatory regions, intergenic regions, and

operon structures. For example, a transcriptomic analysis of

Mycoplasma pneumoniae identified 117 previously unknown tran-

scripts, many of which were non-coding RNAs, and two novel

genes [18]. Transcriptome analyses identified novel, non-coding

regions in other species, including 27 sRNAs in Caulobacter crescentus

[15], 64 sRNAs in Salmonella Typhimurium [17], and a large number

of putative sRNAs in Vibrio cholerae [16]. sRNAs found in pathogen

genomes are known to be involved in various housekeeping

activities and virulence [19].

In this study we used RNA-Seq for the experimental annotation

of the H. somni strain 2336 genome and to construct a single

nucleotide resolution transcriptome map. Novel expressed elements

were identified, and where appropriate, computational predictions

of previously described gene boundaries were corrected.

Results

Mapping of reads onto the H. somni genome
In 2008 the complete genome sequence of the H. somni strain

2336 became available (GenBank CP000947). The 2,263,857 bp

circular genome has a GC content of 37.4%, and 87% of the

sequence is annotated to coding regions. The genome has 2065

computationally predicted genes, of which 1980 are protein coding.

We sequenced the transcriptome of H. somni using Illumina RNA-

Seq methodology, and obtained 9,015,318 reads, with an average

read length of approximately 76 bp. We mapped approximately

9.4% reads onto the reference DNA sequence of H. somni strain

2336 using the alignment program Bowtie [20]. To determine

expressed regions in the genome, we estimated the average coverage

depth of reads mapped per nucleotide/base. We used pileup format,

which represents the signal map file for the whole genome in which

alignment results (coverage depth) are represented in per-base

format. Regions where coverage depth was greater than the lower

tenth percentile of expressed genes were considered significantly

expressed [21]; in the current study, this corresponded to a coverage

depth of 7 reads/bp in pileup format.

As another measure for estimating background expression level,

we analyzed the coverage in the intergenic regions of the genome.

We assumed that at least half of the intergenic region is not

expressed (considering the presence of known expressed regions,

such as 39 and 59 UTR of genes, intergenic region of the operons,

and sRNAs) and calculated the coverage, which corresponded to

#6 reads per base, lower than our first cutoff estimate. We

retained the most conservative cutoff for expression, i.e., 7 reads

per base for describing the expression map of H. somni. Nucleotides

in the genome sequence with coverage depth above our threshold

value were considered to be expressed. This resulted in the

generation of a whole genome transcriptome profile of H. somni

2336 at a single nucleotide resolution. Figure 1 show the steps

involved in the analysis of expressed intergenic regions.

Expression in the intergenic region of the genome
We compared the RNA-Seq based transcriptome map with the

available genome annotation to identify expressed, novel, and

intergenic regions in the genome. Promoters and terminators were

predicted across the genome to add confidence to the identified novel

elements. For the first time, we report the identification of 94 sRNAs

(Table 1) in the H. somni genome. The start and end for sRNA in

Table 1 refer to the boundaries of transcriptionally active regions

(TAR, putative sRNAs). Of these, twelve were similar to well-

characterized sRNA families that are described in many bacterial

species, such as tmRNA, 6S, and FMN (Figure 2). The total of 82

novel sRNAs reported in this study has not been reported earlier.

The majority of the identified sRNAs (.75%) were shorter than 200

nucleotides (length range 70–695 nucleotides). The average GC

content of sRNA at 39.3% was slightly higher compared with the

37.4% GC content of the genome. Promoters within 50 nt

upstream/downstream of the TAR boundaries were predicted for

68 sRNA. Similarly, Rho-independent transcription terminators

were predicted within 50 bp upstream/downstream of 40 sRNA.

Figure 3 shows the depth of coverage for one of the identified novel

sRNA ‘‘HS46’’ viewed in the Artemis genome browser [22].

BLAST analysis of the sRNA sequences against the non-

redundant, nucleotide database at NCBI revealed that 31 of the

sRNA sequences were unique to the H. somni 2336 genome.

Another 41 were highly conserved (.95% identity with .95%

coverage) only in H. somni strain 129PT, which is a commensal,

preputial isolate. A set of 11 sRNAs were conserved in the related

Pasteurellaceae family, which includes genomes such as P. multocida,

H. influenzae, H. parainfluenzae, and H. ovis. Only 11 sRNAs were

conserved in distant bacterial genomes from genera Streptococcus,

Clostrodium, Actinobacillus, Vibrio, and others. This lack of sRNA

sequence conservation beyond the species could indicate that

sRNA sequences are under strong selection pressure, and that they

could be responsible for the adaptation of many species to different

environmental niches.

We searched all H. somni sRNA sequences against the Rfam

database [23] to determine their putative functions. We found that

12 sRNAs were homologs to well characterized sRNAs in other

genomes. The identified functional categories included FMN

riboswitches, gcvB, glycine, intron_gpII, lysine, alpha_RBS, LR-

PK1, isrK, MOCORNA, RNaseP_bact_a, tmRNA, and 6S.

sRNAs for which no Rfam function could be predicted represent a

completely novel set of non-coding sRNAs. Functions of these

novel sRNA need to be determined by further experiments.

Identification and characterization of novel genes
We evaluated the coding potential of all expressed intergenic

regions, by conducting BLASTX based sequence searches against

the non-redundant protein database at NCBI followed by manual

analysis and interpretation. We identified 38 novel protein coding

regions (Table 2). The average length of the identified novel

proteins was around 60 amino acids (ranged from 19 to 135 amino

acids). The majority of the novel proteins (30) were conserved

hypothetical proteins present in related species such as H. somni

129PT, M. haemolytica, and H. influenzae. Some of the novel proteins

had predicted functions, such as DnaK suppressor protein, toxic

membrane protein TnaC, and predicted toxic peptide ibsB3

(Table 2). Figure 4 shows an example of a novel protein ‘‘HSP7’’

that is similar (74% similarity and 100% coverage) to a putative,

phage-related DNA-binding protein of Neisseria polysaccharea.

Corrections made to the existing genome annotation
The single nucleotide resolution map described in this study

enabled us to correct the start site for five genes based on the

Transcriptional Map of Pathogen ‘‘H. somni’’
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current genome annotation (Table 3). These genes were annotated

as phospholipid synthesis protein, ribosomal protein S2, aconitate

hydratase 2, peptide chain release factor 2, and DUF411, a protein

of unknown function. Based on evidence from RNA-Seq data, we

performed a BLAST comparison with other phylogenetically

similar proteins to confirm the new gene boundaries (Table 3).

Non-functional start codons and frameshifts
The comparison of the transcriptome map of the H. somni

genome with predicted proteins revealed the presence of

frameshift mutations. Four genes have non-functional start codons,

resulting in a predicted protein, truncated at the amino terminus

(based on BLAST comparison with homologous proteins in other

species), although full length mRNA was present. An example is

presented for the gene ‘‘HSM_0748’’, annotated as ‘‘Alpha-L-

fucosidase’’ (Figure S1). The other three genes, HSM_0603,

HSM_1666 and HSM_1668, encode a hypothetical protein, type

III restriction protein res subunit, and CTP synthase, respectively.

Two genes with frameshifts causing protein truncations (based on

BLAST comparison with homologous proteins) are HSM_1385

(beta-hydroxyacyl dehydratase, FabA) and HSM_1744 (alcohol

dehydrogenase zinc-binding domain protein). The transcriptome

map revealed a full length mRNA for these two genes that code for

truncated proteins.

Gene expression and operon structures
Our transcriptome map of H. somni identified expression from

1636 (approximately 80%) of the predicted genes. The expressed

genes were distributed evenly across all TIGRFAM functional

categories (Table S1). The transcriptome map allowed identifica-

tion of operon structures at a genome scale, critical for identifying

co-expressed genes and for understanding coordinated regulation

of the bacterial transcriptome. We identified co-expression for 452

pairs (total 730 genes) of H. somni genes (Table S2) that were

transcribed together and constituted a minimal operon. By joining

consecutive overlapping pairs of co-expressed genes, we identified

278 distinct transcription units (Table S3).

We compared our experimentally identified co-expressed genes

with computationally predicted operons. The overlap between

computational prediction of co-expressed genes using DOOR [24]

and this study was 86% (394 gene pairs) (Table S4). Thus, our

dataset validates expression of 394 computational gene-pair

predictions. We identified 59 new gene pairs that are co-expressed

and were not predicted by DOOR, which could be part of

unidentified, new operon structures. For example, further in-depth

analysis indicated a new operon consisting of three genes:

HSM1354, HSM1355 and HSM1356, annotated as ribosomal

protein L20, ribosomal protein L35, and translation initiation

factor IF-3 respectively, which were not predicted computationally

(Figure 5). The orthologs of these genes are well known to form a

functional operon of ribosomal proteins (IF3-L35-L20) in

Escherichia coli [25].

Discussion

In this study using RNA-Seq we describe the whole genome

transcriptome profile of H. somni 2336, a bovine respiratory disease

pathogen. The single nucleotide resolution map helped uncover the

Figure 1. RNA-Seq data analysis workflow for intergenic expression analysis. Analysis workflow includes identification of novel protein
coding genes and sRNAs in the intergenic region of H. somni 2336 genome.
doi:10.1371/journal.pone.0029435.g001

Transcriptional Map of Pathogen ‘‘H. somni’’
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Table 1. H. Somni 2336 sRNAs, their genome location, additional features and comparative genomics.

ID Start# End#
Length
(nt) Promoter

Rho
independent
terminator

Flanking gene
(left)

Flanking
gene(right) Rfam annotation

Conservation
across other
genome*

HS1 8109 8210 101 - Y HSM0009 (+) HSM0010 (+) - C

HS2 16119 16190 71 Y Y HSM0018 (+) HSM0019 (2) - B

HS3 27693 27843 150 Y - HSM0034 (+) HSM0035 (+) - B

HS4 28211 28327 116 Y - HSM0035 (+) HSM0036 (+) - B

HS5 29449 29733 284 Y - HSM0037 (+) HSM0038 (+) - C

HS6 30644 30884 240 Y Y HSM0039 (+) HSM0040 (2) - B

HS7 91913 92041 128 - Y HSM0081 (2) HSM0082 (+) - C

HS8 113922 114088 166 Y Y HSM0102 (+) HSM0103 (2) - C

HS9 161819 161939 120 Y - HSM0149 (+) HSM0150 (+) - B

HS10 183097 183180 83 Y - HSM0171 (2) HSM0172 (+) - B

HS11 197465 197654 189 - - HSM0185 (2) HSM0186 (2) - B

HS12 229676 229780 104 Y - HSM0213 (+) HSM0214 (2) - C

HS13 243592 243683 91 - Y HSM0224 (+) HSM0225 (2) - A

HS14 258140 258443 303 Y Y HSM0242 (2) HSM0243 (2) - A

HS15 258962 259092 130 Y Y HSM0244 (2) HSM0245 (+) - A

HS16 260385 260577 192 Y Y HSM0245 (+) HSM0246 (2) - A

HS17 261314 261511 197 - Y HSM0246 (2) HSM0247 (2) - A

HS18 261829 262158 329 Y Y HSM0246 (2) HSM0247 (2) - A

HS19 264263 264362 99 Y - HSM0250 (+) HSM0251 (+) - A

HS20 279541 279733 192 - - HSM0266 (2) HSM0267 (+) - B

HS21 306503 306957 454 Y - HSM0284 (+) HSM0285 (2) tmrna D

HS22 318188 318443 255 - - HSM0292 (+) HSM0293 (2) - D

HS23 319335 319635 300 - - HSM0295 (+) HSM0296 (+) - B

HS24 341911 342015 104 - - HSM0316 (2) HSM0317 (2) - B

HS25 343637 343745 108 - - HSM0318 (2) HSM0319 (+) - B

HS26 377953 378037 84 Y - HSM0345 (+) HSM0346 (2) - B

HS27 383294 383421 127 Y - HSM0346 (2) HSM0347 (+) - A

HS28 385627 385733 106 Y Y HSM0348 (2) HSM0349 (+) - B

HS29 391757 392003 246 - - HSM0353 (2) HSM0354 (2) - C

HS30 412425 412522 97 - - HSM0368 (2) HSM0369 (2) - B

HS31 472256 472331 75 Y Y HSM0407 (2) HSM0408 (2) - B

HS32 524433 524805 372 Y - HSM0448 (+) HSM0450 (2) - A

HS33 599224 599416 192 Y Y HSM0521 (2) HSM0522 (+) - B

HS34 614906 615013 107 - - HSM0538 (+) HSM0539 (2) intron_gpII A

HS35 616791 617486 695 Y - HSM0539 (2) HSM0540 (2) - A

HS36 617726 618078 352 Y - HSM0539 (2) HSM0540 (2) - A

HS37 618122 618228 106 Y Y HSM0539 (2) HSM0540 (2) - A

HS38 637931 638076 145 Y Y HSM0552 (+) HSM0553 (+) - B

HS39 638222 638366 144 - - HSM0552 (+) HSM0553 (+) - B

HS40 653813 653962 149 Y - HSM0561 (+) HSM0562 (2) - A

HS41 694580 694680 100 Y - HSM0594 (2) HSM0595 (2) - A

HS42 703333 703423 90 Y Y HSM0607 (+) HSM0608 (+) - B

HS43 710363 710450 87 Y - HSM0611 (+) HSM0612 (+) - B

HS44 747233 747386 153 Y - HSM0644 (2) HSM0645 (2) - A

HS45 800181 800295 114 Y Y HSM0704 (+) HSM0705 (+) - B

HS46 851529 851662 133 Y Y HSM0740 (2) HSM0741 (+) - B

HS47 853988 854118 130 Y - HSM0742 (2) HSM0743 (+) - B

HS48 876355 876433 78 - - HSM0758 (+) HSM0759 (+) glycine C

Transcriptional Map of Pathogen ‘‘H. somni’’
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ID Start# End#
Length
(nt) Promoter

Rho
independent
terminator

Flanking gene
(left)

Flanking
gene(right) Rfam annotation

Conservation
across other
genome*

HS49 979462 979681 219 Y - HSM0844 (+) HSM0845 (+) - B

HS50 981925 982225 300 - - HSM0847 (+) HSM0848 (+) - C

HS51 994234 994314 80 Y - HSM0853 (+) HSM0854 (+) - B

HS52 1007799 1008007 208 Y Y HSM0868 (2) HSM0869 (2) - C

HS53 1008086 1008580 494 - Y HSM0868 (2) HSM0869 (2) - A

HS54 1012617 1012823 206 - Y HSM0874 (2) HSM0875 (2) - B

HS55 1014425 1014768 343 Y - HSM0875 (2) HSM0876 (2) - A

HS56 1015189 1015390 201 Y - HSM0877 (+) HSM0878 (+) - A

HS57 1021919 1022474 555 Y - HSM0888 (2) HSM0889 (2) - A

HS58 1031980 1032132 152 Y Y HSM0900 (+) HSM0901(+) - C

HS59 1032206 1032458 252 Y Y HSM0900 (+) HSM0901 (+) - D

HS60 1052587 1052754 167 Y - HSM0920 (+) HSM0921 (+) - A

HS61 1147201 1147290 89 Y - HSM1005 (+) HSM1006 (+) - B

HS62 1260621 1260860 239 - - HSM1095 (+) HSM1096 (+) 6 s D

HS63 1292413 1292563 150 Y - HSM1125 (2) HSM1126 (+) - B

HS64 1307757 1307987 230 Y - HSM1136 (+) HSM1137 (2) - A

HS65 1312693 1312855 162 Y Y HSM1143 (+) HSM1144 (+) - A

HS66 1320228 1320349 121 Y Y HSM1155 (2) HSM1156 (2) - A

HS67 1337412 1337590 178 Y Y HSM1172 (+) HSM1173 (+) - B

HS68 1343583 1343659 76 Y Y HSM1182 (+) HSM1183 (+) - D

HS69 1377309 1377411 102 Y - HSM1218 (+) HSM1219 (+) - C

HS70 1413741 1413887 146 - - HSM1254 (2) HSM1255 (+) lysine B

HS71 1455529 1455708 179 Y - HSM1275 (2) HSM1276 (2) MOCORNA B

HS72 1513886 1513955 69 Y - HSM1330 (+) HSM1331 (+) - B

HS73 1537168 1537267 99 - - HSM1355 (2) HSM1356 (2) LR-PK1 B

HS74 1591107 1591187 80 Y Y HSM1392 (2) HSM1393 (2) - B

HS75 1593953 1594392 439 Y - HSM1395 (2) HSM1396 (+) RNaseP_bact_a D

HS76 1596011 1596138 127 Y Y HSM1397 (+) HSM1398 (+) - B

HS77 1748563 1748820 257 Y Y HSM1521 (2) HSM1522 (+) - D

HS78 1752653 1752795 142 Y - HSM1525 (+) HSM1526 (+) - A

HS79 1839524 1839616 92 Y Y HSM1590 (2) HSM1591 (+) - B

HS80 1859168 1859317 149 Y Y HSM1612 (2) HSM1613 (2) - B

HS81 1874398 1874609 211 Y Y HSM1626 (+) HSM1627 (+) isrK B

HS82 1925814 1925932 118 - - HSM1675 (2) HSM1676 (2) - B

HS83 1927797 1928029 232 Y - HSM1676 (2) HSM1677 (+) - D

HS84 1928157 1928331 174 Y Y HSM1676 (2) HSM1677 (+) - A

HS85 1942445 1942617 172 Y Y HSM1692 (+) HSM1693 (+) - A

HS86 1962487 1962618 131 Y Y HSM1719 (2) HSM1720 (2) - A

HS87 2020545 2020668 123 - - HSM1776 (2) HSM1777 (+) gcvB D

HS88 2124794 2124884 90 Y Y HSM1868 (2) HSM1869 (2) - A

HS89 2136245 2136324 79 Y - HSM1881 (2) HSM1882 (2) - A

HS90 2139563 2139823 260 Y Y HSM1887 (+) HSM1888 (+) - A

HS91 2146286 2146459 173 - - HSMR0065 (+) HSM1893 (+) - B

HS92 2210148 2210318 170 - - HSM1950 (+) HSM1951 (+) - B

HS93 2223802 2223946 144 - - HSM1974 (+) HSM1975 (+) alpha_RBS D

HS94 2229269 2229450 181 - - HSM1982 (2) HSM1983 (+) FMN D

*sRNA sequences conserved in; A - unique to H. somni 2336. B - H. somni strain 129PT only. C – phylogenetically closer bacterial genomes specially members of
Pasteurellaceae family (M. haemolytica, P. multocida. H. influenza etc). D - across distant bacterial species.
#The start and end represents the boundaries of identified TAR (transcriptionally active region) which is a potential sRNA region.
Any cell with no predicted result is marked with ‘2’.
doi:10.1371/journal.pone.0029435.t001

Table 1. Cont.

Transcriptional Map of Pathogen ‘‘H. somni’’
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structure and complexity of this pathogen’s transcriptome and led to

the identification of novel, small RNAs and protein coding genes as

well as gene co-expression. Prokaryotic genome annotation is

performed often using computational gene prediction programs

[8,9]. However, these prediction algorithms are not able to identify

the non-coding sRNAs, antisense transcripts, and other small

proteins. To overcome the shortcomings of computational genome

structural annotation, various experimental methods are used for

identification of novel expressed elements [13,14,15,16,17,18,

26,27,28]. Deep transcriptome sequencing (RNA-Seq) has emerged

recently as a method that enables the study of RNA-based structural

and regulatory regions at the genome scale. RNA-Seq technology

has many advantages compared with existing array based methods

for transcriptome analysis. In particular, RNA-Seq does not require

Figure 2. Identification of sRNA annotated to Rfam. The figure shows identification of well conserved sRNA ‘‘tmRNA’’ using RNA-Seq based
method. ‘‘tmRNA’’ was computationally predicted as a sRNA by Rfam using sequence similarity across other bacterial families.
doi:10.1371/journal.pone.0029435.g002

Figure 3. Identification of a novel sRNA. A highly expressed sRNA ‘‘HS46’’ found in the intergenic region of H. somni 2336 genome.
doi:10.1371/journal.pone.0029435.g003

Transcriptional Map of Pathogen ‘‘H. somni’’
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Table 2. Novel proteins identified in the H. somni 2336 genome along with closest matching homolog and its annotation.

ID Start End Strand Length (nt) Top BLASTX Hit Annotation

HSP1 140988 141083 + 96 ZP_04978675.1 hypothetical protein MHA_2182
[Mannheimia haemolytica PHL213]

HSP2 260019 260078 2 60 YP_002791255.1 toxic membrane protein [Escherichia coli str.
K-12 substr. MG1655]

HSP3 260229 260408 2 180 YP_001784202.1 hypothetical protein HSM_0870
[Haemophilus somnus 2336]

HSP4 260707 260850 2 144 YP_001784202.1 hypothetical protein HSM_0870
[Haemophilus somnus 2336]

HSP5 260951 261007 2 57 CBY77851.1 predicted toxic peptide IbsB3 [Escherichia coli
BL21(DE3)]

HSP6 692328 692543 2 216 ZP_04977604.1 hypothetical protein MHA_1062
[Mannheimia haemolytica PHL213]

HSP7 748664 748849 + 186 ZP_06863963.1 putative phage-related DNA-binding protein
[Neisseria polysaccharea ATCC 43768]

HSP8 752366 752593 + 228 ZP_01791588.1 hypothetical protein CGSHiAA_00240
[Haemophilus influenzae PittAA]

HSP9 753226 753384 + 159 ZP_05848096.1 conserved hypothetical protein
[Haemophilus influenzae RdAW]

HSP10 754234 754398 + 165 NP_873053.1 hypothetical protein HD0492 [Haemophilus
ducreyi 35000HP]

HSP11 758474 758698 + 225 ZP_05848108.1 conserved hypothetical protein
[Haemophilus influenzae RdAW]

HSP12 764501 764686 + 186 ABX51978.1 hypothetical protein [Haemophilus phage
SuMu]

HSP13 771653 771787 + 135 ZP_04464387.1 hypothetical protein CGSHi6P18H1_07995
[Haemophilus influenzae 6P18H1]

HSP14 782712 782840 + 129 YP_001344686.1 hypothetical protein Asuc_1392
[Actinobacillus succinogenes 130Z]

HSP15 858416 858721 + 306 ZP_04976950.1 hypothetical protein MHA_0367
[Mannheimia haemolytica PHL213]

HSP16 982362 982619 + 258 NP_660225.1 repressor-like protein [Haemophilus
influenzae biotype aegyptius]

HSP17 1008333 1008518 + 186 YP_001784474.1 hypothetical protein HSM_1144
[Haemophilus somnus 2336]

HSP18 1014064 1014276 + 213 ZP_02478185.1 hypothetical protein HPS_04457
[Haemophilus parasuis 29755]

HSP19 1023854 1024255 + 402 YP_719605.1 hypothetical protein HS_1393 [Haemophilus
somnus 129PT]

HSP20 1026199 1026414 + 216 YP_002475212.1 putative lytic protein Rz1, bacteriophage
protein [Haemophilus parasuis SH0165]

HSP21 1031209 1031379 + 171 YP_002475190.1 hypothetical protein HAPS_0589
[Haemophilus parasuis SH0165]

HSP22 1031709 1031906 2 198 ZP_05731317.1 hypothetical protein Pat9bDRAFT_4634
[Pantoea sp. At-9b]

HSP23 1043942 1044073 + 132 ZP_02479029.1 hypothetical protein HPS_00455
[Haemophilus parasuis 29755]

HSP24 1306383 1306649 2 267 ZP_04976986.1 hypothetical protein MHA_0405
[Mannheimia haemolytica PHL213]

HSP25 1309667 1309807 2 141 ZP_01787689.1 hypothetical protein CGSHi22421_00792
[Haemophilus influenzae R3021]

HSP26 1324541 1324765 2 225 YP_002475146.1 DnaK suppressor protein/C4-type zinc finger
protein, DksA/TraR family [Haemophilus
parasuis SH0165]

HSP27 1345868 1346077 + 210 YP_001088372.1 putative conjugative transposon egulatory
protein [Clostridium difficile 630]

HSP28 1448209 1448292 2 84 AAB96578.1 TnaC [Haemophilus influenzae]

HSP29 1747221 1747361 + 141 YP_002476351.1 hypothetical protein HAPS_1915
[Haemophilus parasuis SH0165]

HSP30 1750020 1750235 + 216 ZP_04752631.1 hypothetical protein AM305_05314
[Actinobacillus minor NM305]
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ID Start End Strand Length (nt) Top BLASTX Hit Annotation

HSP31 1852968 1853201 + 234 YP_718779.1 hypothetical protein HS_0567a [Haemophilus
somnus 129PT]

HSP32 1959818 1959922 2 105 ZP_04977712.1 hypothetical protein MHA_1177
[Mannheimia haemolytica PHL213]

HSP33 1962885 1963013 + 129 ZP_05993368.1 hypothetical protein COI_2717 [Mannheimia
haemolytica serotype A2 str. OVINE]

HSP34 1962985 1963176 2 192 ZP_05993369.1 hypothetical protein COI_2718 [Mannheimia
haemolytica serotype A2 str. OVINE]

HSP35 1966085 1966366 2 282 ZP_04977704.1 hypothetical protein MHA_1169
[Mannheimia haemolytica PHL213]

HSP36 1977131 1977247 + 117 ZP_07538596.1 hypothetical protein appser10_8220
[Actinobacillus pleuropneumoniae serovar 10
str. D13039]

HSP37 2071545 2071745 2 201 YP_719865.1 hypothetical protein HS_1660 [Haemophilus
somnus 129PT]

HSP38 2165733 2165906 2 174 YP_718223.1 hypothetical protein HS_0017a [Haemophilus
somnus 129PT]

doi:10.1371/journal.pone.0029435.t002

Table 2. Cont.

Figure 4. Identification of a novel protein coding gene. Novel protein coding gene ‘‘HSP7’’ identified using transcriptome analysis shows
homology (similarity 74%, sequence coverage 100%) to a phage related DNA binding protein from Neisseria polysaccharea.
doi:10.1371/journal.pone.0029435.g004
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probes, so the process is free from probe design issues or bias from

hybridization issues. Also, the transcriptome coverage from RNA-

Seq is very high [29,30]. RNA-Seq was demonstrated to be effective

for the discovery of bacterial non- coding RNAs, accurate operon

definition, and correction of gene annotation [27,31,32]. Therefore,

in the current study, we used RNA-Seq for profiling H. somni 2336

transcriptome.

Mapping of RNA-Seq reads onto the H. somni genome sequence

resulted in more than 94% coverage with at least one read per

base. This observation is consistent with the reported 94% genome

expression in Bacillus anthracis, 89.5% in Sulfolobus solfataricus, and

95% in Burkholderia cenocepacia, studied under one or more

experimental growth conditions using RNA-Seq [32,33,34]. These

results indicate that most of the bacterial genome sequence is

expressed at some basal level. To identify significantly expressed

regions above this baseline, we used two alternative methods

(discussed in Results section) to estimate the background

expression. Both methods yielded similar results (6–7 reads per

base). We selected the higher stringency cutoff of 7 reads per base

to minimize the number of false positives.

We identified a total of 95 sRNAs in the H. somni genome.

Twelve of these were predicted by Rfam [23] and are similar to

Table 3. Genes with revised coordinate information based on transcriptome map.

Gene id Previous annotation (Start-End) New corrected annotation (Start-End)

HSM_0031 24651–24929 24597–24929

HSM_0525 602547–603416 602547–603602

HSM_0789 909036–911534 909036–911642

HSM_1019 1164444–1165163 1164444–1165244

HSM_1729 1972283–1972600 1972283–1972765

doi:10.1371/journal.pone.0029435.t003

Figure 5. Identification of a novel operon structure comprised of three genes: HSM_1354, HSM_1355, and HSM_1356. The RNA-Seq
coverage shows three genes annotated as ribosomal proteins (IF3, L35, and L20) being expressed as a transcription unit.
doi:10.1371/journal.pone.0029435.g005
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conserved sRNA (e.g., 6S, tmRNA, FMN) in other bacterial

species, which helps validate our approach. The 83 novel H. somni

sRNAs may have housekeeping function, regulatory activity, or

participate in virulence as described in other pathogenic bacteria

[19,35,36]. The identified sRNAs did not show any location

specific bias across the genome. Similarly, genes known to be

associated with virulence are known to be scattered across

bacterial genomes [37,38]. However, the tendency to form clusters

was observed with sRNAs, which could indicate that functionally

related sRNAs tend to be located in close proximity.

The RNA-Seq based transcriptome map of H. somni identified

38 novel protein coding genes that were missed by the initial

annotation. The average length of the proteins coded by these

genes exceeds 60 amino acids, suggesting that length based cutoff

was not the main reason that these genes were missed by

computational gene prediction programs. The novel protein

coding genes identified in the current study could serve as a

training set to improve gene prediction algorithms.

The transcriptome map helped to identify incorrect annotation

of start codons in the genome. Transcriptional mapping does not

provide direct evidence of translational start sites. However,

location of identified transcriptional start sites suggest that the

annotated start codons are incorrect, an observation that is

confirmed by BLAST comparisons against homologous genes in

other bacterial species. Transcriptional mapping revealed genes

where the 59 untranslated sequence extended well beyond the

translational start. BLAST comparisons indicated that these genes

have either nonsense or missense base changes relative to

homologous genes in other bacterial species, causing apparent

‘‘truncated’’ proteins compared with those in other species.

Further work is needed to determine whether these 59 untranslated

regions serve regulatory functions or they are vestigial.

RNA-Seq data enabled us to determine operon structures at a

genome scale, and it allowed identification of some operons not

predicted by the computational operon prediction method.

Operon structures that include genes not expressed under the

experimental growth condition used in the current study, could

not be identified. Our results support the notion that using a

combination of experimental operon identification by RNA-Seq

and computational prediction can improve operon identification

in bacterial genomes [39].

For the first time, we report the RNA-Seq based transcriptome

map of H. somni 2336 and describe novel expressed regions in the

genome. Whereas the results are interesting, we are aware of the

limitations of the study. Because the RNA-Seq protocol was not

strand specific, we could not determine the strand specificity of

expressed novel transcripts. Therefore, Table 1 lacks information

about sRNA orientation in the genome. Because strand specific

information was missing, we could not describe antisense

expression in the genome. For protein coding genes, we derived

strand specificity based on alignment of the BLAST hit. Despite

this shortcoming, we identified novel expressed regions and

transcriptional patterns across the whole genome at a high

coverage, which is not possible by other transcriptome analysis

methods.

Overall, this study describes RNA-Seq based transcriptome

map of H. somni for identification of functional elements in a

pathogen of importance to agriculture. Our genome-wide survey

predicts numerous, novel, expressed regions that need biological

characterization for understanding disease pathogenesis. Descrip-

tion of all functional elements in the H. somni system is a

prerequisite for conducting holistic systems approaches to

understand the complex pathogenesis of bovine respiratory

disease.

Methods

RNA isolation and sequencing
We propagated H. somni 2336 on three TSA-blood plates (with

5% sheep red blood cells) for 16 hr or until a fresh lawn of cells

was visible. IBC approval was not required for acquiring the plates

as they were purchased through a commercial vendor: Fisher

Scientific (Pittsburgh, PA), and manufactured by Becton Dickinson

Diagnostic Systems, (Franklin Lakes, NJ). We washed the plates

with brain heart infusion (BHI) broth, adjusted the culture to an

OD620 nm = 0.8, and supplemented with RNAprotect reagent.

The cells were harvested by centrifugation and stored at 280uC.

We extracted total RNA using the RNeasy mini kit (Qiagen,

Valencia, CA) following the manufacturer’s protocol. Total RNA

was treated with RNase-free DNAse (Invitrogen, Carlsbad, CA).

Using Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA),

we determined the RNA integrity number (RIN) of total RNA to

be greater than 8. MICROBExpressTM Kit (Ambion, TX, USA),

which specifically removes rRNAs, was used for mRNA

enrichment. Small RNAs (i.e., tRNA and 5S rRNA) are not

removed with this enrichment step (confirmed by Bioanalyzer).

We used 100 ng enriched mRNA with Illumina mRNA-Seq

sample preparation kit (Illumina, San Diego, CA) for library

construction following the manufacturer’s protocols. Briefly,

mRNA was fragmented chemically by divalent zinc cations and

randomly primed for cDNA synthesis. After ligating paired-end

sequence adaptors to cDNA, we isolated fragments of approxi-

mately 200 bp by gel electrophoresis and amplified. We sequenced

one nM of mRNA-Seq library on the Illumina GAII (Illumina,

San Diego, CA), according to the manufacturer’s protocol. Single

read sequencing (36 bp) of the clustered flow cell was performed

by Illumina’s SBS chemistry (v3) and SCS data analysis pipeline

v2.4. We used Illumina Real Time Analysis (RTA v1.4.15.0)

software for flow-cell image analysis and cluster intensity.

Subsequent base-calling was performed using the Illumina GA

Pipeline v1.5.1 software.

Mapping and analysis of Illumina reads
We checked all Illumina reads for quality, and removed

sequence reads containing ‘‘Ns’’. Custom perl script was written

to convert Illumina reads into fastq format. The script

‘‘fq_all2std.pl’’ from MAQ [40] converted fastq format to Sanger

fastq format. Reads in sanger fastq format, were mapped onto the

Histophilus somni 2336 genome sequence (GenBank Accession

number. CP000947) using the alignment tool Bowtie [41],

allowing for a maximum of two mismatches. The reads that

mapped to more than one location were discarded. We used

Samtools [42] to convert data into SAM/BAM format, and to

generate alignment results in a pileup format. Pileup format

provides the signal map file and has per-base format coverage.

Custom perl scripts were written to calculate the background

expression. Processed data was deposited in GEO with the

accession number GSE29578.

Analysis of intergenic regions of H. somni genome
We used in-house perl scripts to extract novel expressed

intergenic regions to identify novel small RNAs, riboswitches,

and putative novel proteins. sRNA ,70 bp in length were

discarded to minimize the number of false positives. For each

novel expressed region, BLAST sequence searches were per-

formed against the non-redundant protein database at NCBI to

identify potential protein coding regions. Intergenic regions within

predicted operons [24] represent expressed regions and can be

mis-classified as sRNAs. Therefore, these regions were excluded.
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We analyzed BLAST results manually, to identify novel protein

coding regions and start codon corrections. If no protein coding

region was found in the intergenic expressed regions, the presence

of a promoter or a rho-independent terminator allowed us to

classify the regions as sRNA. Bacterial promoter sequences were

predicted by Neural Network Promoter Prediction program

(http://www.fruitfly.org/seq_tools/promoter.html) [43]. Rho-in-

dependent transcription terminators were identified using the

program TransTermHP [44]. For functional annotation, all

identified identified sRNA sequences were searched against the

Rfam database [23]. sRNA sequence conservation among other

genomes was determined by blastn searches against non-

redundant nucleotide database at NCBI. We mapped sRNAs,

along with additional features, onto genome browsers like IGV

[45] and Artemis [46] for further visualization, manual analysis,

and interpretation.

Analysis of annotated regions of H. somni genome
Gene expression: expressed reads with coverage above background

were mapped onto the annotated genes of H. somni 2336. Genes

that had a significantly higher proportion of their length (.60%)

covered by expressed reads were considered to be expressed.

Operons: RNA-Seq can identify and predict operon structures in

bacteria. We considered two or more consecutive genes to be part

of an operon, if they fulfilled the following criteria: (a) they are

expressed; (b) they are transcribed in the same direction; and (c)

the intergenic region between the genes is expressed. Overlapping

pairs of such genes were joined together to identify large operon

structures. We used in-house perl scripts for the analyses.

Supporting Information

Figure S1 Mutated start codon. The Figure shows that the

predicted protein coding frame (MH_748) is shorter at the 59 end

than the corresponding transcript level shown by the RNA-Seq

coverage. Although the transcript is longer near 59 end, no start

codon is found in that region which might be a result of the

mutation in that region of the start codon. This was further

validated using homology searches of the full length transcript

which shows high homology (95% Identity and .95% coverage)

to a alpha-L-fucosidase protein from M. haemolytica PHL213.

(TIF)

Table S1 H. somni genes expressed in the present study
according to the TIGRFAM categories.

(XLS)

Table S2 Pairs of co-expressed genes identified in H.
somni 2336 genome by RNA-Seq data analysis.

(XLS)

Table S3 Transcription units identified by joining co-
expressed genes in H. somni 2336.

(XLS)

Table S4 Comparison of co-expressed gene pairs
identified from RNA-Seq data and operon prediction
program ‘‘DOOR’’.

(XLS)
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